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Abstract--It is demonstrated that simple similarity criteria which can be satisfied experimentally can be 
derived from the conventional equations governing gas-liquid flows. The criteria are thus susceptible to 
experimental verification and potentially useable for the scaling of flows. The convention equations, however, 
are seen to break down in the context of rupturing films or filaments, in particular owing to the special 
influences of van der Waals forces. The validity of the criteria in any given case rests on the influence of such 
special effects on the general flow development. Two cases are examined, coalescing bubbles and atomising 
liquid sheets, and the influence of van der Waals forces on the rupture time shown to be slight. 

1. I N T R O D U C T I O N  

In the field of single-phase flow, the use of dynamic-similarity criteria is standard procedure, the 
principal advantages being: 
(1) The possibility of testing a system under "scaled" but equivalent conditions; 
(2) a much more concise description of flow phenomena as functions of the similarity parameters 
than of individual fluid properties; 
(3) the use of the simplest criteria for isothermal or adiabatic flows as a starting point for more 
general criteria for flows with heat and mass transfer. 

In the field of two-phase flow the number or variables is much greater and the need to regroup 
these into the smallest number of influencing parameters would seem especially great. Surprising, 
however, little mention and hardly any use has been made of the similarity approach although a 
number of inexact empirical correlations for two-phase flow behaviour are in use. 

In the present paper the following steps are taken. 
(1) The conventional physical model of isothermal liquid-gas flows is used to derive the simplest 
possible general criteria for dynamic similarity. 
(2) The possibility of experimentally satisfying these criteria is considered. This is seen to be 
feasible under certain circumstances, so that an experimental test of the criteria's validity is 
possible, as well as limited practical scaling of flows given such validity. 
(3) The assumptions of the conventional physical model of isothermal flows are examined closely 
and seen to be suspect for flows with joining or dividing phase boundaries, because of special 
effects present in very thin films and filaments. 
(4) Two such flows (coalescing bubbles and atomising liquid sheets) are examined in more detail 
to ascertain whether the conventional model is likely to suffice. 

In (4) some of the ideas introduced about the mechanisms of coalescence and sheet break up 
are new. 

2. THE C O N V E N T I O N A L  P H Y S I C A L  M O D E L  AND THE R E L A T E D  S I M I L A R I T Y  C R I T E R I A  

The conventional model of isothermal gas-liquid flows is that of two Newtonian fluids, each 
satisfying its own equation of state, continuity and Navier-Stokes, the conventional no-slip 
condition at solid boundaries and the following conditions at liquid-gas interfaces: 
1. Continuity of velocity (i.e. a further no-slip condition); 
2. continuity of tangential stress; 
3. a discontinuity in normal stress given by 

, 1 1 
P b -  P I_ = 0"(--~ + --~2 ) . 
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Here Pb and PL are the normal stresses in the gas and liquid respectively, R ~ and R; the radii of 
curvature of the interface in any two planes containing the normal, and ~r, the surface tension, is a 
constant. 

By dynamic similarity of two such flows is meant that their velocity fields are identical at all 
times when expressed in terms of distances, velocities and times normalized with respect to a 
characteristic length and velocity of the flow. Written in such normalized terms (making use, 
additionally, of the liquid density as characteristic density) the governing equations are as 

follows. 

The gas 
Navier-Stokes: 

Continuity: 

State: 

Dt = ~ grad pa + \pz, l \3 grad div uo + grad s u~ [1] 

D p ~  _ 
Dt p~ div uz [21 

pc  = constant = E. [3] 
pc 

The liquid 
Navier-Stokes: 

Continuity: 

DUL= (1)  (~eL)  Dt f f  k - grad pL + grad s uL [4] 

div uL = 0 [5] 

State (already incorporated in [4] and [5]): 

pL = 1. [6] 

The interface 
Continuity of velocity: 

u o  = uL [7] 

Continuity of tangential stress: 

I ~ T x  az I kReL I \ ax gz I [81 

lawo+ avo  ( I_L_]COwL+ avL] 
go[--~-y --~z } = \Re L i \  ay az I 

[9] 

Discontinuity in normal stress: 

[ -pa - ,aw~ l divuo)]_ ( 2  '~OWL]= ' ' 
2#X~t'-~-~--Z --" ~ [--pL \ReL} OZ J 

[101 
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Here u, p, p, Ix and t denote the normalized velocity, density, pressure, dynamic viscosity and 
time respectively, div, grad and grad 2 are with respect to normalized distance, and the subscripts 

G and L denote gas and liquid, x, y and z are normalized Cartesian coordinates defined at the 

point of the interface under consideration, z having the direction of the local interface normal, u, 
v and w are the associated normalized velocity components. Thus, although the laws expressed 
by [8], [9] and [10] apply over the whole interface, the direction of z varies from point to point, 
adjacent directions being related by the-interface curvature, k is the unit vector in the vertical 

downwards direction. 
It is seen that provided the five dimensionless constants F (Froude number, u2 /gxc ) ,  ReL 

' ' Uc XCpL/tr), E (Euler number, (liquid Reynolds number, UcXcpL/IxL), W (Weber number, 2 , 
r t 2 P U X r p d p o u c  ) and Ix6(Ixd c COL) are equal for two flows the normalized governing equations are 

identical. Here primed symbols denote the original, dimensional variables, g is the (dimensional) 
acceleration due to gravity, and uc and Xc are a characteristic (dimensional) velocity and length. 
Provided also that the normalized boundary conditions are the same for each flow, dynamic 

similarity will result. In addition to geometrically similar distributions of imposed pressure or 
velocity, the latter implies equal P~ at some characteristic point in the flow at all normalized 

times: 
r ! 

pG,  C = p G, C / p L = i d e n t i c a l  [11] 

where C again stands for characteristic and "identical" is used to mean equal in both flows. The 
requirement of equal Euler number is satisfied everywhere if satisfied at some characteristic 

point at all normalized times: 

i • t U 2 E = p~ .c lp~ .c  c = identical. 

Equivalently, from [11], 

t t t U  2 p ~.clpt,  c = identical. [121 

Listing the remaining requirements 

2 X F = Uc/g  c = identical [131 

ReL = UcXcp L/Ix L = identical [14] 

W = uc2xcplJo " = identical [151 

t t  u ! Ixa IX el cXcp L = identical. 

In view of [14] the latter can be given more simply as 

Ix b/Ix I_ = identical. [16] 

3. EXPERIMENTAL SATISFACTION OF THE CRITERIA 

Given the validity of the conventional physical model six conditions, [11]-[16], must therefore 
be satisfied, in addition to geometrical similarity of imposed boundary conditions in order to 
obtain dynamic similarity of two isothermal liquid-gas flows. This situation may be compared 
with that of single-phase isothermal flow where only one condition, equal ReL, need be satisfied in 
the case of liquids or two, equal Re6 and E (= [isothermal Mach number]-2), in the case of gases. 
Surprisingly, however, it appears possible to satisfy all six requirements under certain conditions. 

Consider first the three requirements [13], [14] and [15]. With a little algebraic manipulation 
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these can be re-expressed as: 

i.e. 

= {FWg~]'' 
"~  \--7-~ ] ' 

( u c ) ,  _ ( o ' l p D , ' "  
/ 0 1  tx 1/4 ' (Uc)z ~ Ipe)2 

[17] 

assuming g to be equal for the two flows, 1 and 2, 

i.e. 

and 

= ( W , ~ ' ~  ''= 
Xc \ F p l g , ]  ' 

(xc), _ (cr/pL), ''~ 

(Xc)2 - (o'lp D= "2'  

3 t o" pL (ReL)'F 
gO*D" - W '  - Q = identical. 

[18] 

[19] 

[17] and [18] stipulate the relative sizes and velocities of the two flows, which are completely 

determined once the liquids are chosen. [19] restricts the choice of liquids to those having the 

same value of the property parameter Q. Some examples of Q values at 20°C are given below. 

Liquid p ~_(kgm -3) tr (kgsec -2) # L(kgm-' s-') Q 

Mercury 13.6 x 103 472 x 10 -3 1.56 x 10 3 2.46 x 1013 
Water 1.00 x 103 72.8 x 10 -3 1.00 x 10 -3 3.93 x 10 '° 
Trichloroethylene 1.46 x 103 29.3 x 10 -3 0.56 x 10 -3 3.81 x 10 '° 
Ethanol 0.79 x 103 22.8 X 10 -3 1.20 x 10 -3 4.60 x 108 

While most of the liquids are clearly "unscalable" by each other, the Q values for water and 

trichloroethylene are very close. Since Q is a steep function of temperature, only a small change 

in the temperature of either liquid is necessary to equalize the values. The required length and 

velocity scale factors are given by [17] and [18]: 

(Uc)~ _ 0.72; (XC) t r  = 0.53. 
(Uc)~ (Xc)~ 

The satisfaction of [12] is, in principle, always possible by appropriate adjustment of the 

absolute pressure: 
t / t u 2x 

(p~.~), w, -  ~ ) ,_ (o 'pL ) ,  '/~ 
(p a,c)= ~ [20] ' (pLUc)=  (o-pL)~ '/= 

from [17]. For the case of trichloroethylene and water (pb.c),J(pb.c)w ~-0.77. 
The satisfaction of [11] will be possible in many instances because of the miscibility of all 

gases and the wide range of gas densities. F r o m [ l l ] ,  [20] and the perfect gas law the required 

ratio of molecular weights is 

(MWh (oLIo-),  "~ T, = ~ [211 
(MW)2 "-~2' 

where T denotes absolute temperature. 
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The final requirement, satisfaction of [16], will be possible in fewer cases because of the small 
range of /zb.  For the case of trichloroethylene and water, for example, bearing in mind that 
T1 = T:, [21] gives (MW),J(MW)~, = 1.9. If the gas used with water is air (mean molecular weight 
about 29) the gas used with trichloroethylene must have a mean molecular weight of the order of 
55, which is quite feasible. The required dynamic viscosity however is about 0.56 times that of air 
which would be difficult or impossible to realise in a gas mixture of the correct density. Choice of 
a gas with a higher viscosity than air (e.g. neon, argon) would remove this problem. 

In practice, given the validity of the criteria, satisfaction of [16] may often be unimportant 
since the influence of/~ b in the various two-phase phenomena will often be very slight (e.g. in 
bubbly flow). In this case the only severe restriction is equality of Q for the liquids used. Tests of 
the similarity of water and trichloroethylene two-phase flows which satisfy the above similarity 
criteria are now being set up at Delft University of Technology for case of vertical upward pipe 
flow and a wide range of flow types from bubbly to annular mist. 

4. VALIDITY OF THE CONVENTIONAL PHYSICAL MODEL 

The assumptions underlying the conventional physical model are the following: 
(1) a surfactant-free, incompressible, Newtonian liquid 
(2) a perfect, Newtonian gas 
(3) no mass transfer between the phases 
(4) isothermal flow 
(5) no velocity discontinuity at the interface 
(6) no influence of liquid-solid contact angle, i.e. solid walls either totally wet or totally dry 
(7) no special effects present during the rupture of thin films or filaments of either phase. 

These will be considered in turn to see to what extent they can be realised in actual flows. 
In most types of flow, sufficient purity of the liquid can be achieved to render the effects of 

surface active agents negligible. The treatment of many liquids as incompressible and Newtonian 
is of course accurately justified, so assumption (1) is valid in many situations. 

Assumption (2) is a good approximation for most gases if the vapour content is low. The 
saturated vapour pressure of most liquids is only a few percent of the absolute pressure if they 
are of the order of 100°C from their boiling points. Under these circumstances, therefore, 
assumption (2) is justifiable, as is assumption (3). 

Strictly, a contradiction exists between pressure variation in a gas flow and isothermal 
conditions [assumption (4)]. However, because large pressure variations are usually accompanied 
by high velocities and increased inter-dispersion of the phases, and because the heat capacity of 
the liquid phase is usually much greater than that of the gas, the isothermal approximation should 
nevertheless be a good one in many flows. A small departure from isothermal conditions which 
might not, however, have negligible consequences could occur in the final stages of thinning of 
liquid films or filaments. Here the increase of surface area per unit volume leads to a cooling of 
the film (filament) which, though offset by conduction from the neighbouring fluid increases the 
surface tension locally and so decreases the thinning rate, as occurs with surface active agents. 
According to Lee (1973) this can be a decisive effect in some bubble coalescence situations. This 
represents the first of the possible "special effects" mentioned in assumption (7). 

As with the similar no-slip condition at a solid boundary, assumption (5) should be justified for 
all but highly rarefied gas flows. Assumption (6) is valid in many flows and where it is not, the 
influence of contact angle will often be negligible. 

For flows with joining or dividing phase boundaries (coalescing bubbles or droplets, atomising 
liquids or gases) the final thinning mechanics of the relevant films or filaments must be taken into 
account in any complete description of the flow. The possibility of non-negligible thermal effects 
has been mentioned. Other special effects are the emergence of inter-molecular attractive forces 
not adequately described by a simple surface tension, such as the van der Waals pressure, and the 
breakdown of the continuum description altogether when the film or filament becomes very thin. 
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If any of these effects produces an appreciable delay or acceleration of the final thinning 
process it will manifest itself in the rate of development of the whole flow and the similarity 
criteria based on the conventional physical model will not apply. Since no general estimate of the 
magnitude of these effects is available the similarity criteria derived above must at present be 
regarded as suspect on the grounds of assumption (7) except for "separated" gas-liquid flows 
where each phase is continuous and remains so. 

In what follows the van der Waals pressure is examined in more detail and a first attempt made 
to estimate its influence on the thinning time of liquid films. 

5. THE VAN DER WAALS PRESSURE IN THIN FILMS 

Attractive "van der Waals" forces arise between all molecules. Their magnitude depends 
greatly on the molecule concerned and falls off steeply with distance. Because of their very short 
range their effects are confined to a surface layer and can normally be represented by a surface 
tension. In very thin liquid films, however, (~<10 7m) the whole film becomes a part of the 
surface layer. Molecules in a thinner part of the film are less tightly bound and a tendency 
therefore exists for liquid to flow from thin to thick which can be expressed, energetically, as the 
existence of an additional compressive force on the film, the "van der Waals pressure", I/. The 
magnitude of this pressure is in fact independent of whether the film is one of liquid in gas or gas 
in liquid and for films of the order of 10-Tm or less is given by 

II = A/67rh  3 [22] 

(Hamaker 1937; Verwey & Overbeek 1948; Scheludko 1962). Here h is the film thickness and A, 
the Hamaker constant, depends on the liquid (and, in principle, on the gas too). 

Because of its h-3 dependence, once II becomes comparable with the conventional stresses 
responsible for thinning of the film, thinning will accelerate and rupture rapidly follow. The 
sequence of events is depicted in figure 1. (a) and (b) represent two flows satisfying the simple 
similarity criteria which therefore have the same normalized thinning curve up to the point that 
the van der Waals pressure becomes important. Thereafter the liquid with relatively stronger van 
der Waals forces thins more rapidly and At' represents the resulting difference in normalized 
rupture time. If At' is comparable with the time required for significant change in the main flow 
then a noticeable non-similarity of the two flows will result and the simple criteria will not suffice. 

To estimate At' in the cases treated below, thinning will be treated as following the 
conventional model down to a critical thickness h" (figure I), at which the film abruptly ruptures. 
An estimate of h" will be obtained from the thickness at which the van der Waals pressure II 
becomes equal to the conventional stress responsible for thinning. The h" so obtained is a 

L= 

o7 Thinning ocording to the 
c ~ conventional physical 

o 
z 

(hc) b (hc) a 

alJ ~b'" " -  
0 rmolized time, t '  

At '  

Figure 1. Thinning of a film with (a) relatively strong van der Waals forces, (b) relatively weak. 
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function of the Hamaker constant A, and typical variations in A can be translated into variations 
in h" and thence, via the conventional thinning equation found, into typical variations in the 

rupture time, At'. 

6. T H I N N I N G  MODEL FOR THE FILM BETWEEN EQUAL COALESCING BUBBLES 

The sequence of events leading to bubble coalescence may in general be expected to be as 

follows: 
(1) For reasons associated with the main flow the bubbles attain a relative approach velocity, 

resulting in a flow of liquid away from the zone between them. 
(2) Because of the inertia of this flow the bubble centres continue to approach each other even 
when the pressure required to produce this flow becomes of the order of the capillary pressure, 

and flattening of the adjacent surfaces (film formation) occurs. 
(3) As the bubble centres continue to approach each other the film grows in diameter while at the 
same time outward flow within it reduces its thickness. 
(4) When part of the film becomes sufi~ciently thin, the van der Waals pressure becomes important 
and rupture rapidly follows. 

The model used to estimate the thinning rate of the film is that of a parallel sided film of fixed 
radius, a, later taken to be the mean radius during the whole process (figure 2). The most serious 
approximation here is probably that of parallel sidedness. In reality such a film would rapidly 
develop the dimpled form indicated in figure 3 and observed in films with immobile interfaces 
(MacKay & Mason 1963). This means not only that the capillary driving pressure at the film 
centre is greater than in a parallel film, but also that the amount of liquid which must be expelled to 
permit any given minimum thickness to be reached is much less. Consequently the estimated final 
thinning rate in the present analysis is likely to be conservative (these conclusions are borne out by 
preliminary results of finite-difference calculations now in progress) leading to an exaggerated 
estimate of the influence of van der Waals forces on the rupture time. 

Thinning of a parallel sided, constant radius film 
The situation is illustrated in figure 2. It is assumed that gas shear and pressure variation are 

negligible and that: 

b - a [23] 

~ Liquid 

,inil"iol radius of r vatu re 

Figure 2. Model of coalescing bubbles. 
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Liquid 

Figure 3. Dimpled film between coalescing bubbles. 

h < a < R, [24] 

goLa < 2or /R ,  [25] 

where unprimed symbols now denote original, dimensional quantities. Assumption [24] permits 

transverse gradients and velocity components to be neglected. [25] permits gravity to be 

neglected. Both assumptions are examined later. 

Continuity gives 

r ~ _ a  

r dh  d H  
u = 2h dt - r - ~ - ,  [26] 

a ~ r < b  

- r  dH  
u = [1 + (r - a)Z/bh] " d-T' [27] 

where H = ½ In h. 
Substituting [26] into the Navier-Stokes equation for the radial direction and integrating with 

respect to r from 0 to a:  

d S-r] 
p . = p o  2 Lt, dt]  dt J 

[28] 

where the subscript L is now omitted. 
Integrating likewise for the region r = a to r = a + kb: 

P° = -P-d-~- [ 2 + - - l n  - p ~ - ~ + b h  In - b h  + rra _ ( b h )  - 2 t z  d t  ' 

[29] 

where k is less than but of the order of unity so that transverse terms may still be neglected at the 

outer limit and yet the velocity and pressure can be approximated as zero. 
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Equating the right hand sides of [28] and [29] the terms containing b are found to be negligible 

in view of [23] and [24] provided 

It is seen later that [30] is fulfilled. The following equation is then obtained 

d2H 4~ dH+ ~PO_~ 
dtZ+po’ dt pa2 ’ 

po is related to (PO)=, the normal stress at the film centre by 

(POlL = - PO + 2/L($), 

= -PO - 4/.~ $ 
( ) 

by continuity 
0 

from [26]. Further, 

Substituting in [32], 

dH 
= -PO+457 

(R,), = (&)o = -PO = -2uIR. 

Substituting in [31], the thinning equation of the film is obtained: 

d*H 12~ dH 4uz0 
dtZ+x*dt+pa R . 

This can be integrated to give 

T= [&+ (3,1 exp(-12pt/pa7-& 

and again to give 

Ho-H=-~[&+(~~[1-exp(-LZpt/pa2)]+&. 

If 

an expansion of the exponential indicates that the terms containing p may be neglected. 

[301 

[311 

~321 

[331 

1341 

r351 

1361 

[371 

[381 
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Thinning is then inertia-controlled and [37], [36], [35] and [34] become respectively 

{ T] pa2R (dH'~ 1"1 - 1 + 8o'(/-/o- H)/paZR 
t = - - T ~  \ d t  ]ol_ o ' [39] 

d H  ( d H )  4o- 
d-T = ~ o-p--h--~ - t '  

[40] 

d2H 4cr 
-d-~ = pa2R , [41] 

po = 2cr/R. [42] 

Henceforth considerations will be confined to this situation which will later be seen to include 
many coalescence situations in low viscosity liquids such as water. 

Typical 1ilm radius and initial conditions 
In order to make use of the thinning equation [39], values are needed for the initial conditions 

ho and (dH[dt)o and for the mean film radius. An estimate of ho can be obtained from the 
separation at which the pressure generated between approaching spherical bubbles becomes 
sufficient to cause appreciable deformation 

e.g. po=  tr/R. [43] 

An expression for po is obtained from [29] taking a = 0, b = R and - ( d h / d t )  = V, the bubble 
approach velocity (assumed constant): 

=Pv [1 
po 4ho \ +p---VR)" 

[44] 

In bubbly flows coalescence of equal bubbles occurs by one bubble wholly or partially 
entering the wake of the preceeding one. V may therefore be expected to be an order of 

magnitude less than the velocity with which the bubbles travel with respect to the liquid. In 
pressure gradients less than or of the order of g, this latter velocity will be of the order of the rise 
velocity of the bubbles in still liquid. For low-viscosity liquids such as water, the rise velocity is of 

the order of 20 cm sec -1 for bubbles of 1 mm dia or more (Brodkey 1967), giving V = 2 cm sec -1. 
The corresponding values of the viscous term in [44] are small (-<0.1 if R -> 2 mm) and will be 

neglected: 

4# ~ 1. [45] 
pVR 

It will shortly be seen that [45] justifies the assumption that thinning is inertia controlled. 
Incorporating [45], [43] and [44] give 

and 

ho _ p V2R 
R 4or ' 

' ~  o=~o  ~-o=-h----~ - pVR 2. 

[46] 

[47] 

ho is seen to be very small in relation to R. For example, for water at 20°C, R = 2 mm and 
V = 2 cm sec-l, ho/R = 1/365. The radius of the film, a, may therefore be approximated by the 
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value which would result if the bubbles were spherical and in contact at t = 0 and their centres 
continued to approach each other at the velocity V. In view of [24] this is given by 

a 2 = 2 R V t ,  

and the mean of a over a period t is 

a = (8RVt/9) '/2 = (RVt)  1~2. [48] 

If [47] and [48] are substituted in [39] the thinning equation becomes 

pVR 2 
t = T ( H o -  H ) ,  [49] 

o r  

t' = - ~ ( H o '  - n ' ) ,  [50] 

where t '  and H '  are the normalized quantities t V / R  and ½1n(h/R) respectively and W is the 
Weber number pV2R/~. In the present context t '  is chosen as the time of rupture so that 

lneh ,/h ,~1/2 H ~ - H ' =  ~ o, cj , [51] 

where h" is the effective rupture thickness discussed in section 5 and represented in figure 1. 

Justification of  the assumptions of  the model 

The various assumptions made during the derivation of the thinning equation can now be 
examined. From [46], [48] and [50] 

a[R = [ W(H~ - H')/411/2, [52] 

ho/a = [W/4(H~ - H')]  ~2, [53] 

gpa g~R 2 
(2~-7"-R) = [ W(H~ - H')/4] 1,2. [54] 

For the assumptions [24] and [25] to apply, the left hand sides of [52], [53] and [54] must be 
considerably smaller than unity. From [51], H~-H'  is of the order of unity and a typical value will 
be seen to be 3. Taking this value, V = 2 cm sec -1 and water at 20°C, [52], [53] and [54] yield the 
following values: 

R(mm) a/R hola gpa/(2tr/R) 

0.5 0.045 0.002 0.001 
2 0.09 0.003 0.023 
5 0.14 0.005 0.22 

20 0.28 0.010 7.2 

The assumptions are thus approximately satisfied for bubbles of 5 mm radius or less. 
Making use of [47], [48], [49], [40] and [41] the first alternative of assumption [30] reduces to 

~(H~-H ' )<~  1, 

which is just satisfied remembering that H ~ - H ' =  3. 

IJMF VOL. 2 NO. 2~.z 
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Finally, making use of [48] and [47], assumption [38], justifying the use of the 

inertia-controlled thinning expression, becomes 

4# ~1 and 6/~ ~1  
pVR pVR ' 

which has already been shown to be satisfied for bubbles of a few mm dia or more in low-viscosity 

liquids such as water [45]. 

In summary, therefore, the inertia-controlled thinning equation [49] or [50] should be a good 
approximation for bubbles between 1 mm and I0 mm dia in low-viscosity liquids such as water, 

apart from the parallel-film assumption which under-rates the final thinning rates. 

7. INFLUENCE OF VAN DER WAALS PRESSURE ON THE INSTANT OF COALESCENCE 

As discussed in section 5, an estimate of the effective normalized rupture thickness h" may be 
obtained from the thickness at which the van der Waals pressure II becomes equal to the 

corresponding stress responsible for thinning. In the present case this stress will be taken as the 

pressure difference between the centre and the edge of the parallel film: p o - p ~  (po is negative 

relative to the pressure in the bulk of the liquid), h" is then given by 17 = po-p~.  

a [ i.e. ~ = R 2 t r  1+ In ~ [55] 

making use of [22] and [28] and the appropriate expressions for a, (dH/dt)  and (d2H/dt2). h" can 

be found from [55] by trial and error. 
To observe the influence of the Hamaker constant A on the value of h" consider the liquids 

water and aniline for which Scheludko (1962) found A = 7 x 10 -20 and 7 x 10-19kg m2sec -2 

respectively. These two liquids satisfy the similarity requirement of equal Q (section 3) if the 

water is at 20°C and the aniline at somewhat less than 10°C (when pan = 1.03 X 103 kg m -3, 

~a, = 43 x 10 -3 kg sec -2, /z~ = 0.68 x 10 -3 kg m -~ sec-l). The required ratio of bubble radii for 

dynamically similar coalescence is found from [18] to be RadRw = 0.755. 
Choosing Vw = 2 cm sec -~ and Rw = 2 mm, which is in the middle of the range of validity of 

the thinning model, [55] gives 

( c)w = 0.99 x 10 -5 (he 198 ~,, H~ - H '  = 2.8) 

h! ( c)ao = 3.2 x 10 -5 (he = 480 A).  

The corresponding difference in the normalized rupture times in the two flows is given by [50] 

and [51]: 

t "  - t ' ,  = W [ln(h~/h ")w '/2 - ln(h~/h ,),a~] 

= --~- ln[(h ")ad(h ")w] [56] 

since (h6)a. = (h6)w = W/4 from [46]. In the present case [56] gives t ' - t ' ,  = 1.6 x 10 -3. This 

corresponds to a real-time interval of 1.6× 10 -3 R/V: 1.6× 10-" sec. That is, rupture occurs 
1.6 × 10 -4 sec later in the water flow than it would if it were truly dynamically similar to the aniline 

flow. Bearing in mind that the final thinning rate estimated by the parallel-film model is 

conservative, the actual time interval would be less. 
In typical flows of a few msec -~ this delay, equivalent to the order of 0.1 mm or less in 
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distance would probably be undetectable and the conclusion is therefore that the dynamic 
similarity criteria should apply accurately except insofar as thermal effects are of influence 
(section 4). As R increases the delay increases approximately as R 2. If this trend continues 
beyond the range of validity of the present model (R = 5 mm), the delay could become significant 
for bubbles of a few cm dia. Whether or not this is so depends on the extent to which dimpling of 
the film accelerates final thinning. Calculations of the thinning of actual, dimpled films are 
therefore of considerable interest. 

8. T H I N N I N G  MODEL OF AN ATOMISING LIQUID SHEET 

A liquid sheet injected into still gas exhibits the classical Kelvin-Helmholtz instability and 
develop waves after which atomisation generally occurs. For thin sheets (thickness, 
h ,~ wavelength, )t) these are predominantly of the sinuous type while for thick sheets dilational 
waves are also possible (figure 4). The initial instability has been studied theoretically for the 
inviscid case (Squire 1953; Haggerty & Shea 1955; Dombrowski & Hooper 1961; Dombrowski 
1962; Clark & Dombrowski 1972; Crapper et al. 1973) but in the case of sinuous waves the 
mechanism of rupture is still obscure. On the one hand without the waves, as in the case of low gas 
pressure, rupture is greatly delayed and finally occurs via thread formation at the sheet edge 
(Dombrowski & Hooper 1961) and on the other hand the intrinsic stretching of the sheet due to the 
waves is too slight to explain rupture. 

The explanation clearly lies in unequal thinning within each wave due to some additional 
mechanism. Clark & Dombrowski (1972) have indicated one such mechanism: a second order 
dilational harmonic which, if its growth continued in the initial exponential way, would cause 
rupture in the correct order of distance. The validity of this analysis is restricted to the very early 
stages of growth, however, so that as regards the final thinning rate nothing can safely be 
concluded, quite apart from the neglect of viscous effects. 

The present analysis is mainly concerned with the final thinning rates. The existence of 
developed waves is taken for granted and the variation of the gas normal and tangential stresses 
over a wave examined. Both types of variation are seen to exist and to lead to local thinning 
(normal-stress or pressure thinning is probably equivalent to Clark and Dombrowski's second 
order harmonic) but tangential-stress or shear thinning dominates in the final stages. 

Pressure thinning 

The Kelvin-Helmholtz instability originates in the underpressure generated when the gas 
flows over a wave crest combined with an overpressure on the other side of the sheet where a 
trough exists. For small amplitude waves the magnitudes of the under and overpressures are 
almost equal, but for moderate amplitudes the underpressure is markedly greater. This is shown 
by Motzfeld's measurements (Ursell 1956) on the non-separated flow over the last of three 
wooden sine waves (figure 5). For the smaller amplitude, a/;t = 1/40, the under and overpressure 
are almost equal, but for a[A = 1/20 the underpressure is almost twice as great (a, wave 
amplitude). 

Sinuous waves 

Dilational w a v e s  

Figure 4. Sinuous and dilational instabilities of a moving liquid sheet. 
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Figure 5. Gas-pressure variation over a sine wave (Motzfeld). 

The related variation of static pressure within the liquid sheet is readily derived, treating the 
liquid as inviscid for the present. Referring to figure 6, the mean pressure, p, within any section of 
the sheet is given by 

p = (pA, + p.,)/2 

= (pA + o'/RA + pB - crlR,)12 

= (pa + p . ) / 2 ,  

since Ra =RB as h "~A. Here A and A' ,  B and B'  are points on the gas and liquid sides of the 
interface respectively. Since pB is also the gas pressure A/2 away from A on the same side of the 

sheet, Motzfeld's results can be converted into a variation of p within an equivalent sheet. The 
resulting variation is shown in figure 7 for the case a/A = 1/20. The pressure is a minimum at a 
crest (/trough) and a maximum between crests (/troughs) and will therefore produce a flow of 
liquid towards the crests (/troughs) and cause local thinning between them. 

To estimate the resulting thinning rate, parallel sided thinning will first be considered, still 
treating the liquid as inviscid. Suppose the imposed pressure is symmetrical with a maximum at 

x = 0 (where x represents distance in the direction of motion of the sheet). Symmetry and 
continuity then give 

x dh dH 
u -  h dt = - x ' ~ - '  [57] 

where H = In h now. Neglecting the influences of gravity, transverse acceleration of the sheet 

~ @ k d  shee t  

Figure 6. Sinuous sheet. 
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Figure 7. Mean-pressure variation within a sinuous sheet. 
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and transverse gradients and components of velocity within the sheet, the Navier-Stokes 
equation for the x-direction is 

lap au --_=at+p~ 
P ax 

from [57]. Integrating with respect to x 

p =po-$[(gpgq. 

The required pressure distribution for parallel sided thinning is thus a quadratic one. But any 
pressure distribution is quadratic close to a maximum since, by a Taylor expansion 

p ‘p.+x($),+; @),+o(x3~, 1591 

and (aplax),, is zero. Equating the coefficients of x2 in [58] and [59], the thinning equation at the 
maximum-pressure point of the sheet is obtained: 

WI 

An estimate of (a ‘p /ax*), can be obtained by approximating the variation of p (figure 7) by a 
cosine curve of wavelength h/2: 

4%=x 
p =pocos 7 , ( > 

167r’ 16~’ -- *Z PO=--2 A . apdJZ, El1 

where the coefficient (Y can be expected to be a function primarily of a/h and is about 0.05 for 
Motzfeld’s case of a/A = l/20 (figure 7). 

Substituting [61] into [60] the pressure-thinning equation is obtained: 

WI 

Shear-thinning 
A realistic assessment of the shear stress variation over the surface of a wave is more difficult 

than that of the pressure variation. Considering again non-separated flow, two factors will be of 
influence. The first is a growth of the mean boundary layer from origin onwards, determining the 
mean shear stress (figure 8). The second is the acceleration of the boundary layer at each crest by 
the local underpressure causing a high local shear stress, and the converse phenomenon at each 
trough (figure 9). 

As seen from figure 5, the underpressure created at the crest is about 50 per cent of the gas 
dynamic pressure for a/A = l/20. Non-separated flow over the waves appears to continue to 



206 A. K. CHESTERS 

Figure 8. Growth of the gas boundary layer on a sinuous sheet. 

t, 

X/4 

Ca 

Figure 9. Variation of the boundary layer over a wave (viewed with respect to the sheet). 

values of a/;t of the order of 1/10 (Crapper et al. 1973) at which stage the underpressure may be 
expected to excede the gas dynamic pressure. Typically therefore, the boundary layer will be 
accelerated from its mean condition (corresponding to zero underpressure) to the order of the 
mainstream velocity U in a distance of ~./4. The resulting crest shear stress, 70, should therefore be 
comparable to that on a flat plate at a distance ;t/4 from its leading edge: 

poU 2 j (  4p.a "~ 
7o ~ - T -  V k p o  Ux/" 

[63] 

The shear stress due to the mean boundary layer is approximately given by a similar 
expression with ,X/4 replaced by the distance from origin and is therefore much smaller than Zo. 

At the troughs the shear stress is smaller still. The total shear stress 7 (including both sides of the 
sheet) may therefore be expected to vary in the manner shown in figure 10 and can be 
approximated by the equation 

7 = ½zo[l + cos(4zrx/;t)]. [64] 

The variation of 7 over a wave will produce unequal deceleration of the different parts of the 
sheet, resulting in a stretching and thinning of some zones and a compression and thickening of 

others. The thinning is readily analysed if shearing motion within the sheet itself is neglected (i.e. 

Direction of T 

~ i , " ~ J l  , i " ~ ' ~  "1" i 
0 t 0"2 "~ 0-4~ 0"6~/'0"8 I'0 

o I- Profile of wove 

Figure  10. Var ia t ion of  the  total shear  s t ress  o v e r  a wave .  
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if "plug flow" is assumed). This can be shown to be well justified even for low-viscosity liquids 
provided the sheet thickness is less than about 10 -3 cm. Thicknesses in the final stages of thinning 
are several orders of magnitude less than this and the force due to ~" can then be replaced by that 
due to an equivalent pressure gradient 

Op = _ Z  [65] 
Ox h" 

This pressure gradient has a strength proportional to l/h and consequently becomes dominant 
over conventional pressure thinning in the final stages of thinning. 

A similar analysis to that for pressure thinning yields the equation for parallel sided shear 
thinning 

1 O~" (._d_t~2 dZH 
p~ ~ -  dt 2 . [66] 

Differentiating with respect to x, 

02,1 - 
~-3 = 0 [67] 

which is evidently a necessary condition for parallel sided thinning as well as the condition that 
the thinning rate, governed by Oz/Ox, be a maximum or a minimum. [67] is satisfied at the inflexion 

points (a) and (b) (figure 10) where the thinning rate is respectively a maximum and a minimum 
(i.e. maximum thickening rate). 

Substituting in [66] from [64] and [63], 

JLgG 

k dt J dt' pLh)` 
[68] 

This is the same as the pressure-thinning equation [62] apart from the right hand term 
representing the driving force. Equating the right hand terms, the two types of thinning are seen 
to be equally powerful if 

h - 4 , / r 2 a  XlkpoUJ" [69] 

Below this value of h shear thinning dominates since the right hand side of [68] varies as h- '  
whereas the right hand side of [62] is constant. 

To evaluate [69], estimates of a and ~ are required, a was seen to be 0.05 for a [)` = 1/20 and to 
increase rapidly with increasing a/)`. Since, however, a maximum value of a/A of about 1/10 is 
imposed by the occurrence of flow separation a typical value of a in the non-separated regime 
will be taken as 0.1. An indication of the value of A is given by the mostly rapidly amplified 
wavelength according to inviscid theory: 

max ~-~ 47rtT/p6 U 2. [70] 

Observed values of A are higher, though of the same order (Clark & Dombrowski 1972), and a 
typical value will be taken to be 2), . . . .  [69] then becomes 

h =10 J ( ~ ) .  [71] 
po ,I \z~" tJ / 



208 A. K. CHESTERS 

For the case of water and air at atmospheric pressure and 20°C with U = 20 m sec-', [71] gives 
h = 1.4 x 10 -3 cm. As noted earlier, values of h in the final stages of thinning are several orders of 
magnitude smaller than this and it is therefore clear that shear thinning will dominate completely. 

Taking the initial thinning rate, - (dh/dt) ,  to be zero the shear thinning equation [68] can be 
integrated with respect to t to give 

where 

dh 
d-'t- = [Bh{1 - (h/ho)3}] ''2, [72] 

/d,O 

B 3pLA [73] 

For h ~ ho, as is the case during the final stages of thinning, [72] becomes 

dh = _ ( B h  )~12. [74] 
dt 

Integrating again, 

At = - 2B-'/2A(X/hc) [75] 

where At is the variation in rupture time associated with variations in the effective rupture 

thickness ho 

The influences o f  flow separation and of  liquid viscosity 
The preceeding analysis is for non-separated gas flow and negligible liquid viscosity except 

insofar as it is required to justify the "plug flow" model of the film. In reality, flow separation does 
occur when the amplitude of the waves becomes sufficient (Crapper & Dombrowski 1973) and 
liquid viscosity must provide some resistance to the deformation involved in the stretching and 
thinning of the film. 

The effect of flow separation is to limit the pressure variation which can occur over a wave. 
The general form of the pressure variation will not be greatly altered and expression [62] for 
pressure thinning should still be roughly valid, with the coefficient a of the same order as for 
non-separated flow. The crest shear stress ~o should likewise remain of the same order as before, 
but the occurrence of a stagnation point P (figure 11) means that the local shear stress gradient 
and hence, from [66], the shear thinning rate are theoretically infinite. In reality the position of P 
probably fluctuates but a pronounced increase in the thinning rate in this zone (which is also the 
original zone of maximum thinning) probably results. Once again, therefore, the present estimate 
of the final thinning rate is likely to be conservative, leading to an exaggerated estimate of the 
influence of van der Waals forces on the rupture time. 

An estimate of the importance of liquid viscosity can be obtained from the underpressure 
created in the maximum thinning zone as a consequence of the deformation there: 

OW 
p = - p  + 2p, L-~z 

= -- V - 2~L-~x ] 
by continuity t 

= - P  + 2 / ~ L ~  ] 

= _ p - 21~L(B/h) '12 
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Figure 11. Separated flow over a wave. 

assuming the thinning rate to be approximately given by the inviscid expression [74]. Here p is 
the pressure at any point in the sheet and P the stress normal to the plane of the sheet. P is 

related to the external gas pressure via the transverse acceleration of the sheet and the 
normal-stress interface condition. The term -2/zL(B/h)1/2 is an additional underpressure caused 

by liquid viscosity and will tend to produce pressure thickening. Its importance can be gauged by 
comparing it with the pressure variation over the thinning zone which is equivalent to the shear 

stress: 

3p ~-o h [76] a p  = ~ .  A x - ~ - . ~  

from [65], ;t/8 being the half-width of the zone. The viscous term is thus negligible if 

2tzL (B /h ) 1/~ ~ ('co~h). (h/8). 
Making use of [63] and [73] and taking ;t = 2Amax again ([70]), this condition becomes 

" 
~r cr pL /Z~ 

h "~ 3( U)--/J, LpG "'2-2 
[77] 

For water and air at atmospheric pressure and 20°C with U = 20 m sec -~, [77] yields h "~ 25 
cm. The effect of viscosity is thus entirely negligible, and would become important in the final 
stages of thinning only for liquids with/zL -> 1000/z ...... 

9. INFLUENCE OF VAN DER WAALS PRESSURE ON THE BREAKUP TIME 

Once again, an estimate of the effective rupture thickness hc is obtained from that at which 
the van der Waals pressure, II, becomes equal to the corresponding stress responsible for thinning, 

in this case the equivalent pressure variation over the thinning region, Ap, as derived in [76]: 

17 = Ap. [78] 

Making use of [22], [76] and [63] and taking h = 2h . . . .  [78] yields 

he2= A 
• "X/2~rcr/zo U [79] 

The values of hc may now be calculated for water and aniline flows satisfying the simple 
similarity criteria of sections 2 and 3. Taking the water situation as water in air at atmospheric 
pressure and 20°C with U = 20 m sec- ' ,  [79] yields (hc)w = 1.3 × 10 -9 m (13/~). The corresponding 

values of U and/~o for the aniline flow are given by [17] and [16], and [79] then yields 

(h~)~. = 5.4 x 10 -9 m (54/~). 



210 A.K. CHESTERS 

Strictly speaking, continuum theory no longer applies at such thicknesses but the thinning 
equation should nevertheless predict the correct order of variation in the rupture time. 

The normalized rupture thicknesses, h ' ,  bear the ratio 

(h')~ _ (h~)w × (Xc)~ 
h'  - - "  [80] ( c)an ( h--~an (XC)w 

(XC)ad(Xc)w is given by [18], and [80] yields (h ")w/(h ")a, = 0.182. For complete similarity (equal 
h ' )  the water rupture thickness would therefore have to be 1/0.182 times greater: 71 x 10 -'° m. The 
corresponding change in the water rupture time is given by [75]: 

At = - 2B-'/:(~/(7.1 x 10 -9) -X/(1.3 x 10-9)) 

= -4.5 × 10 -5 sec. 

That is, the water sheet ruptures 4.5 × 10 -5 sec later than it would if truly similar to the aniline 
sheet. In terms of a distance delay, Ax, this is 0.9 mm. 

Breakup distances for such sprays are typically a few cm (Clark & Dombrowski 1972) so that 
this delay lies on the border of significance. Since, further, final thinning is probably faster than in 
the present model because of the influence of the gas stagnation point, the real delay is probably 
truly negligible. At higher values of U the breakup distance is less but so is Ax. 

10. CONCLUSIONS 

(1) Contrary to the impression given by the various empirical correlations in existence, simple 
criteria for the dynamic similarity of isothermal gas-liquid flows without mass transfer can be 
derived from the conventional governing equations. Aside from geometrical similarity of 

imposed velocity or pressure boundary conditions, these consist of equality of six dimensionless 
groups: a characteristic gas to liquid density ratio, the gas to liquid dynamic viscosity ratio and 
the Euler, Weber, Froude and liquid Reynolds numbers. 

(2) Under certain conditions these criteria can be satisfied experimentally so that tests of their 
validity are possible as well as limited practical scaling, given such validity. These conditions 
allow a free choice of the liquid scalant as long as the vapour pressure is not high and the property 

group pLo:/l~4g is the same for the two liquids. Once the liquid has been chosen the required 
length, velocity and pressure scaling is fixed as well as the molecular weight and viscosity of the gas 

scalant. 
(3) The conventional physical model breaks down in the case of rupturing films or filaments of 

either phase owing to the emergence of additional van der Waals attraction effects to those of a 
simple surface tension, to the cooling of stretching liquid films or filaments, and to the ultimate 
breakdown of the continuum model. Since no general estimate of the magnitude of these effects 
is available the simple criteria must at present be regarded as suspect except for separated 
gas-liquid flow. 

(4) Assuming a parallel-film model of thinning, the coalescence time of bubbles of a few mm 
diameter in low-viscosity liquids appears to be inertia-controlled and to be influenced to a 
negligible extent ( -10  -4 sec) by the strength of the van der Waals forces present. Actual final 
thinning rates will be higher than those estimated by the parallel-film model, rendering the van der 
Waals influences still smaller. 

Whether these influences become significant for large bubbles depends critically on the final 

thinning rates of the non-parallel (dimpled) films involved. 
(5) Given the growth of sinuous waves on a liquid sheet injected into still gas, the thinning of 

the sheet takes place locally as a result of both pressure variation within the sheet and shear 
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stress variation over it. In the final stages of thinning, shear thinning is dominant, indicating the 
important role of gas viscosity in sheet atomisation. 

The final thinning rate is inertia controlled up to high values of the liquid viscosity 
( -  1000/~ .. . .  r). On a non-separated model of the gas flow the strength of the van der Waals forces 
appears to be of only slight influence on the rupture time/distance ( -10  -5 sec/1 mm). This 
influence should be still smaller in actual, separated flows because of an acceleration of shear 
thinning by the re-attachment stagnation point. 

(6) In summary, the preliminary evidence on the applicability of simple similarity criteria to 
gas-liquid flows is favourable but considerable experimental and theoretical work is necessary 
before the criteria's exact range of validity can be established. In the meantime, they remain a 
much more fruitful basis for scaling or correlating gas-liquid phenomena than existing methods. 
In many situations only a few of the six similarity parameters will be of importance and the task 
of scaling or correlation is then less formidable. 
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R~sum6--On montre que des crit~res de similitude simples, qui peuvent ~tre exp6rimentalement satisfaits, 
peuvent 8tre d6duit des 6quations classiques des 6coulements liquide-gaz. Ces crit~res sont ainsi susceptibles 
de v6rification ex#rimentale et sont potentiellement utilisables pour la mod61isation d'6coulements. Les 
6quations classiques cessent cependant d'6tre valables si des films ou filaments se rompent, et ceci en 
particulier ~ cause de rinfluence sp6ciale des forces de Van der Waals. Dans un cas donn6, la validit6 des 
crit~:res repose sur rinfluence de tels effets sp6ciaux sur le d6veloppement g6n6ral de l'6coulement. Deux cas 
sont examin6s, celui de bulles coalescentes et celui de nappes liquides en cours d'atomisation, dans lesquels 
on montre que l'influence des forces de Van der Waals sur le temps de rupture est faible. 

Auszug---Es wird gezeigt, dass einfache, experimentell ueberpruefbare Aehnlichkeitskriterien aus den 
herkoemmlichen Gleichungen fuer Gas-Fluessigkeitsstroemungen abgeleitet werden koennen. Die kriterien 
koenneu deshalb durch Versuche bestaetigt und zur ModeIlierung yon Stroemungen eingesetzt werden. Die 
herkoemmlichen Gleichungen verlieren jedoch ihre Gueltigkeit in Bezug auf eine Zerstoerung yon Schichten 
oder Faeden, vor allem wegen des besonderen Einflusses yon van der Waals-Kraeften. Die Gueltigkeit der 
Kriterien haengt in jedem einzelnen Fall vom Einfluss solcher Sondereffekte auf die allgemeine 
Stroemungsentwicklung ab. Zwei Faelle: das Zusaramenfliessen yon Blasen, und das Zerstaeuben yon 
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Fluessigkeitsschichten, werden untersucht und es zeigt sich, dass der Einfluss der van der Waals-Kraefte  auf 
die Zeit bis zur Zerstoerung gering ist. 

Pe31oMe- - I ' l oKa3aHo,  qTO ripocTbIe KpHTepHH IaO.ZlO6H~, KOTOpbIe yaOBYleTBOp~IOT 3KcHepHMeHTy, 

MOFyT 6blTb BbIBejIeHbl I43 O~blqHl:,IX ypaBHeHHl'~, onpe2aenmoluHx Fa3OXgH~KOCTHOe TetIeHHe. ~TH 

KpHTepHPI, TaKHM o 6 p a 3 o M ,  HO,~/~aIOTC~I OI'/blTHOMy HOI1TBep)K~IeHHIO H HOTeHHHaYlbHO nO.rle3Hbl 

}IYI,q H3MepeHH~I IIOTOKOB. l"[OKa3aHO, TeM He MeHee, qTO ypaBHeHHfl KOHBeKI.IHH Hapyma~oTc~[ a 

yC.rIOBH~IX o6pbIBa  II.rIeHOK H.rIH BOYIOKHHCTblX CTpyeK, B qaCTHOCTkI npoHcxo2I f lmero  OT o c 0 6 0 r o  

BYIH~HHfl BaH-~ep-BaanbCOBblX CH.rl. I..~eHHOCTb KpHTepHeB B YtlO6OM cYlyqae OCTaeTCfl BO BTIH~HHH 

TaKHx OCO6blX flBYleHHI'~ Ha 061.ttee pa3BHTHe rlOTOKa. IdCCYle~IOBaHI, I ~Ba cYtyttaa CMelIIeHH~I lly3blpCl~ 

H pa321po6neHna  cnoeB )KH2/KOCTH H n o K a s a H o ,  qTO B.rIHIIHHe B a H - 2 i e p - a a a n b c o s b l x  c n n  Ha BpeM,q 

paap~ ,ma  npeHe6pexmMO.  


